The Marginal Damage Costs of Different Greenhouse Gases: An Application of FUND

Author:

Waldhoff Stephanie1,Anthoff David2,Rose Steven3,Tol Richard S. J.4

Affiliation:

1. Joint Global Change Research Institute , College Park, MD, USA

2. University of California , Berkeley, CA, USA

3. Electric Power Research Institute , Washington , DC, USA

4. University of Sussex , Falmer , UK ; Vrije Universiteit , Amsterdam , The Netherlands

Abstract

Abstract The authors use FUND 3.9 to estimate the social cost of four greenhouse gases—carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride—with sensitivity tests for carbon dioxide fertilization, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions assumptions. They also estimate the global damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide. For all gases, they find the social costs and damage potentials sensitive to alternative assumptions. The global damage potentials are compared to global warming potentials (GWPs), a key metric used to compare gases. The authors find that global damage potentials are higher than GWPs in nearly all sensitivities. This finding suggests that previous papers using GWPs may be underestimating the relative importance of reducing noncarbon dioxide greenhouse gas emissions from a climate damage perspective. Of particular interest is the sensitivity of results to carbon dioxide fertilization, which notably reduces the social cost of carbon dioxide, but only has a small effect on the other gases. As a result, the global damage potentials for methane and nitrous oxide are much higher with carbon dioxide fertilization included, and higher than many previous estimates.

Publisher

Walter de Gruyter GmbH

Subject

General Economics, Econometrics and Finance

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3