Size-dependent functional response of the round goby Neogobius melanostomus; implications for more accurate impact potential calculation

Author:

Franta PavelORCID,Gebauer RadekORCID,Veselý Lukáš,Szydłowska Natalia Z.,Drozd Bořek

Abstract

Abundance and per-capita foraging efficiency are essential factors for predicting and quantifying an invasive predator impact on prey, i.e., the impact potential (IP). However, population structure is not included in the calculation, and IP accuracy might be improved by incorporating predator body size. The population structure of the round goby Neogobius melanostomus, a highly invasive predator, was surveyed in the Elbe River. We determined the functional response (FR, per capita foraging) of the three most abundant size classes of N. melanostomus on the water louse Asellus aquaticus. We then calculated the IP for each size class and for the entire population with (the actual impact potential – IPA) and without (the impact potential for limit size rage – IPLSR) population body size structure (based on FR of the medium size class). All three size classes of the predator showed type II FR with respect to A. aquaticus. The estimated FR parameters, attack rate and handling time, as well as the maximum feeding rate, were size dependent. Despite the lowest per capita foraging efficiency, small individuals displayed the highest IP among the tested size classes because of their high abundance. Conversely, medium and large individuals, although showing highest per capita foraging efficiency, displayed lower IP. Hence, IPA showed more precise IP calculations compared to IPLSR. Overestimation of the potential impact as a consequence of omitting predator population size structure was negligible at the investigated locality. The IP of the N. melanostomus population five years post-invasion can be accurately calculated based on the FR of medium-sized fish.

Publisher

Regional Euro-Asian Biological Invasions Centre Oy (REABIC)

Subject

Water Science and Technology,Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3