The Effect of Test Length on the Accuracy of Estimating Ability Parameter in the Two- and Three-Parameter Logistic Models: Comparison by Using the Bayesian Method of Expected Prior Mode and Maximum Likelihood Estimation

Author:

Al-Tarawnah Eisa Abdul-Wahhab,Al-Qahtani Mariam

Abstract

This study aims to compare the effect of test length on the degree of ability parameter estimation in the two-parameter and three-parameter logistic models, using the Bayesian method of expected prior mode and maximum likelihood. The experimental approach is followed, using the Monte Carlo method of simulation. The study population consists of all subjects with the specified ability level. The study includes random samples of subjects and of items. Results reveal that estimation accuracy of the ability parameter in the two-parameter logistic model according to the maximum likelihood method and the Bayesian method increases with the increase in the number of test items. Results also show that with long and average length tests, the effectiveness is related to the maximum likelihood method and to all conditions of the sample size, whereas in short tests, the Bayesian method of prior mode outperformed in all conditions. Results indicate that the increase of the ability parameter in the three-parameter logistic model increases with the increase of test items number. The Bayesian method outperforms with respect to the accuracy of estimation at all conditions of the sample size, whereas in long tests the maximum likelihood method outperforms at all different conditions.   Received: 17 September 2021 / Accepted: 24 November 2021 / Published: 3 January 2022

Publisher

Richtmann Publishing

Subject

Social Sciences (miscellaneous),Education

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3