Effects of fly ash introduction on friction and wear characteristics of brake pads

Author:

YILMAZ Ali Can1

Affiliation:

1. Çukurova Üniversitesi

Abstract

Fly ash is a waste matter generally emitted abundantly from chimneys of the production facilities and should mostly be recycled. In this context, this study reveals the tribological effects of fly ash on brake pad components by doping the fly ash in basic brake pad matrix with various weight fractions of 30% (S30), 35% (S35) and 40% (S40) by reducing aluminum powder in the pad matrix. According to the results, as the fly ash concentration increases in the matrix, density and hardness of the structure were prone to decrease to an extent. Water immersion technique was used to determine density values and specially modified pin-on-disc tribotester was utilized to measure coefficient of friction (CF) and specific wear rate (SWR) values between brake pad samples and the cast iron rotating disc. Among prepared samples, maximum average reduction in density and hardness were observed to be by 3.97% and 10.67%, respectively. S30 depicted the minimum CF of 0.32 and maximum CF of 0.43 was performed by S40. Maximum specific wear rate was observed for S40 subtending to an increase of 8.67% from that of S30 to S40. Results showed that, though higher escalation in CF as the fly ash fraction elevates in the matrix, wear rates did not show a dramatic increase which is an indication of effectiveness of fly ash in brake pads in terms of braking performance and long term durability.

Publisher

International Journal of Automotive Engineering and Technologies

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3