A novel design of heating system using phase change material for passenger car cabin in cold starting conditions

Author:

GÜRBÜZ Habib1ORCID,ATEŞ Durukan1ORCID,AKÇAY Hüsameddin1ORCID

Affiliation:

1. SÜLEYMAN DEMİREL ÜNİVERSİTESİ

Abstract

In this paper, the use of exhaust waste heat energy stored in a latent heat thermal energy storage (LHTES) system for cabin heating of a passenger car at cold climate conditions was investigated by experimental and computational fluid dynamics (CFD). A liquid circulation system was installed for this purpose, consisting of two heat exchangers, one in the passenger car's rear compartment and the other in which the phase change material (PCM) in the LHTES system was stored. Commercial RT55 paraffin wax was used as PCM, and tap water was used as heat transfer fluid (HTF). Experimental and CFD analysis studies, which started at 283 K cabin interior temperature, were continued for 1500 sec (25 min). Before the experiments, the cabin interior of the passenger car was cooled up to 283 K with the air conditioning system, and the air conditioning system was kept on at a setting where the cabin interior temperature would remain constant at 283 K during the experiments. Thus, real cold climate conditions were provided for the experimental study. As a result, it has been observed that with the new cabin heating system, thermal comfort conditions for people are provided after the first five minutes, and this temperature can be maintained throughout the experiment. So much so that the cabin temperature increased from 283 K to 295 K in five minutes and reached approximately 297 K at the end of the experiment with a slow rate of increase. Furthermore, the difference in RT55 temperatures between the experimental and CFD analysis results is less than 3% during the cabin interior heating period.

Funder

No

Publisher

International Journal of Automotive Engineering and Technologies

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3