1. Reference1 I. A. Bakhtin, The contraction mapping principle in almost metric space, Functional Analysis,
\textbf{30}, (1989), 26-37.
2. Reference2 A.Chanda, B. Damjanovi$\acute{c}$, L. K. Dey, Fixed point results on $\theta$-metric spaces via simulation functions, Filomat, \textbf{31(11)}, (2017), 3365-3375.
3. Reference3 S. Czerwik, Contraction mappings in b-metric spaces, \emph{Acta. Math. Inform. Univ. Ostraviensis},\textbf{ 1}, (1993), 5-11.
4. Reference4 S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, \emph{Atti Sem. Mat. Univ. Modena}, \textbf{46}, (1998), 263-276.
5. Reference5 M. Demma, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard sequences and b- simulaton functions, Iranian J. Math. Sci. Inform., \textbf{11(1)}, (2016), 123- 136.