Affiliation:
1. ZONGULDAK BÜLENT ECEVİT ÜNİVERSİTESİ, FEN-EDEBİYAT FAKÜLTESİ
Abstract
This article deals with the qualitative analysis of a general class of difference equations. That is, we examine the periodicity nature and the stability character of some non-linear second-order difference equations. Homogeneous functions are used while examining the character of the solutions of introduced difference equations. Moreover, a new technique available in the literature is used to examine the periodic solutions of these equations.
Publisher
Fundamental Journal of Mathematics and Applications
Reference28 articles.
1. [1] R. Abo-Zeid, Global attractivity of a higher-order difference equation, Discrete Dyn. Nat. Soc., 2012 (2012), Article ID 930410. $\href{https://doi.org/10.1155/2012/930410}{\color{blue}{[\mbox{CrossRef}]}}$
2. [2] M. Gümüş¸, The periodicity of positive solutions of the non-linear difference equation $x_{n+1}=\alpha+(x_{n-k}^{p}/x_{n}^{q})$, Discrete Dyn. Nat. Soc., 2013
(2013), Article ID 742912. $\href{https://doi.org/10.1155/2013/742912}{\color{blue}{[\mbox{CrossRef}]}}$
3. [3] M. Gümüş, Global dynamics of solutions of a new class of rational difference equations, Konuralp J. Math., 2(7) (2019), 380-387. $\href{https://dergipark.org.tr/tr/download/article-file/844502}{\color{blue}{[\mbox{CrossRef}]}}$
4. [4] M. Gümüş, Analysis of periodicity for a new class of non-linear difference equations by using a new method, Electron. J. Math. Anal. Appl.,
8(1) (2020), 109-116. $\href{https://journals.ekb.eg/article_312810.html}{\color{blue}{[\mbox{CrossRef}]}}$
5. [5] Y. Halim ,N. Touafek and Y. Yazlık, Dynamic behavior of a second-order non-linear rational difference equation, Turkish J. Math., 6(39)
(2015), 1004-1018. $\href{https://doi.org/10.3906/mat-1503-80}{\color{blue}{[\mbox{CrossRef}]}}$