1. [1] Y. Halim, N. Touafek and E.M. Elsayed, Closed form solution of some systems of rational difference equations in terms of Fibonacci numbers,
Dyn. Contin. Discrete Impulsive Syst. Ser. A., 21 (2014), 473-486. $\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84921376512&origin=resultslist&sort=plf-f&src=s&sid=91bba5b1c3e4f1fe08d591120fc9321c&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Closed+form+solution+of+some+systems+of+rational+difference+equations+in+terms+of+Fibonacci+numbers%22%29&sl=116&sessionSearchId=91bba5b1c3e4f1fe08d591120fc9321c&relpos=2}{\color{blue}{[\mbox{Scopus}]}}$
2. [2] A. Khelifa, Y. Halim and M. Berkal, On the solutions of a system of (2p+1) difference equations of higher order, Miskolc Math. Notes,
22(1) (2021), 331-350. $\href{https://doi.org/10.18514/MMN.2021.3385}{\color{blue}{[\mbox{CrossRef}]}}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85108574785&origin=resultslist&sort=plf-f&src=s&sid=14cd60960479e6053cb8a55b7acc85e1&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+solutions+of+a+system+of+%24%282p%2B+1%29%24+difference+equations+of+higher+order%22%29&sl=95&sessionSearchId=14cd60960479e6053cb8a55b7acc85e1&relpos=0}{\color{blue}{[\mbox{Scopus}]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000661139500024}{\color{blue}{[\mbox{Web of Science}]}}$
3. [3] S. Stevic, Representation of solutions of bilinear difference equations in terms of generalized Fibonacci sequences, Electron. J. Qual. Theory
Differ. Equ., 67 (2014), 1-15. $\href{https://doi.org/10.14232/ejqtde.2014.1.67}{\color{blue}{[\mbox{CrossRef}]}}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-84920091929&origin=resultslist&sort=plf-f&src=s&sid=a3bfaa90d452179a22299f08db027bc5&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22Representation+of+solutions+of+bilinear+difference+equations+in+terms+of+generalized+Fibonacci+sequences%22%29&sl=121&sessionSearchId=a3bfaa90d452179a22299f08db027bc5&relpos=0}{\color{blue}{[\mbox{Scopus}]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000347538300001}{\color{blue}{[\mbox{Web of Science}]}}$
4. [4] A. Khelifa, Y. Halim and M. Berkal, On a system of three difference equations of higher order solved in terms of Lucas and Fibonacci
numbers, Miskolc Math. Notes, 22 (2021), 331-350. $\href{https://doi.org/10.1515/ms-2017-0378}{\color{blue}{[\mbox{CrossRef}]}}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85086232146&origin=resultslist&sort=plf-f&src=s&sid=c146d85ddc5d11795610d7010f9e7845&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+a+system+of+three+difference+equations+of+higher+order+solved+in+terms+of+Lucas+and+Fibonacci+numbers%22%29&sl=121&sessionSearchId=c146d85ddc5d11795610d7010f9e7845&relpos=0}{\color{blue}{[\mbox{Scopus}]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000536293100011}{\color{blue}{[\mbox{Web of Science}]}}$
5. [5] A. Khelifa, Y. Halim, A. Bouchair and M. Berkal, On a system of three difference equations of higher order solved in terms of Lucas and
Fibonacci numbers, Math. Slovaca, 70 (2020), 641-656. $\href{https://doi.org/10.1515/ms-2017-0378}{\color{blue}{[\mbox{CrossRef}]}}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85086232146&origin=resultslist&sort=plf-f&src=s&sid=d46d85900161fe9acbd834a0c52925c0&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+a+system+of+three+difference+equations+of+higher+order+solved+in+terms+of+Lucas+and+Fibonacci+numbers%22%29&sl=121&sessionSearchId=d46d85900161fe9acbd834a0c52925c0&relpos=0}{\color{blue}{[\mbox{Scopus}]}}
\href{https://www.webofscience.com/wos/woscc/full-record/WOS:000536293100011}{\color{blue}{[\mbox{Web of Science}]}}$