1. [1] E.W. Barnes, The asymptotic expansion of integral functions defined by Taylor’s series, Philos. Trans. Roy. Soc. London Ser. A Math. Phys.
Sci., 206 (1906), 249-297.
2. [2] E.M. Wright, The asymptotic expansion of integral functions defined by Taylor series, I. Philos. Trans. Roy. Soc. London Ser. A Math. Phys.
Sci., 238 (1940), 423-451.
3. [3] T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
4. [4] H.M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental
functions, J. Adv. Engrg. comput., 5(3) (2021), 135-166. $\href{http://dx.doi.org/10.55579/jaec.202153.340}{[\mbox{CrossRef}]}$
5. [5] V. Kumar, On the generalized Hurwitz-Lerch zeta function and generalized Lambert transform, J. Classical Anal., 17 (1) (2021), 55–67.
$\href{http://dx.doi.org/10.7153/jca-2021-17-05}{[\mbox{CrossRef}]}
\href{https://www.scopus.com/record/display.uri?eid=2-s2.0-85132267417&origin=resultslist&sort=plf-f&src=s&sid=81fa61a1532600f63071f79cd12df452&sot=b&sdt=b&s=TITLE-ABS-KEY%28%22On+the+generalized+Hurwitz-Lerch+zeta+function+and+generalized+Lambert+transform%22%29&sl=67&sessionSearchId=81fa61a1532600f63071f79cd12df452&relpos=0}{[\mbox{Scopus}]}
%\href{}{[\mbox{Web of Science}]}$