Selection of alfalfa genotypes for dry matter yield and persistence with repeated measures

Author:

Oliveira Cristiano Ferreira,Souza Jacqueline Enequio,Siqueira Michele Jorge Silva,Silva Júnior Antônio CarlosORCID,Ferreira Reinaldo Paula,Vilela Duarte,Cruz Cosme Damião

Abstract

The biggest challenge in the alfalfa breeding program is to obtain cultivars with high persistence, high productivity, and adaptability. Therefore, studies about selection methods are necessary for the success of alfalfa breeding programs. This study aimed to evaluate dry matter yield and persistence in alfalfa for selecting genotypes, using appropriate statistical models for experiments with repeated measures. The experiment was conducted at Embrapa Southeast Livestock, in São Carlos, state of São Paulo, Brazil in a randomized blocks design, in plots subdivided in time, with three replicates. Eight genotypes were evaluated, and the agronomic trait evaluated was dry matter yield. The experiments in split-plots were used with two and three errors and generalized linear models with the following correlation structures: composite symmetry (CS), heterogeneous composite symmetry (HCS), auto regressive (AR), heterogeneous auto regressive (HAR), and variance components (VC). The best model was selected according to the lowest value of the Akaike Information Criterion (AIC), and three methodologies were used to identify the genotype with greater productivity and persistence: Average test for multiple comparisons, adaptability, and stability by multi-information, and similarity between genotype and ideotype. The interaction between genotypes and cuts was significant, demonstrating the existence of the different behavior of the alfalfa genotypes over the cuts. Different methodologies allowed to measure the average yield of the alfalfa genotype and the persistence over the cuts. PSB 4 genotype demonstrated promissory behavior in terms of productivity and persistence throughout the production cycle of alfalfa.

Publisher

Editora Mecenas Ltda

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3