Use of hydrogel in the irrigation management of white pitaya (Hylocereus undatus) seedlings: Biometrics and accumulation of organic and inorganic solutes

Author:

Diógenes Maria Fgênia SaldanhaORCID, ,Mendonça VanderORCID,Mendonça Luciana Freitas de MedeirosORCID,Moura Elias Ariel deORCID,Rege Keivianne da Silva LimaORCID,Oliveira Luana Mendes deORCID,Oliveira Agda Malany Forte deORCID, , , , , ,

Abstract

The initial development of pitayas may be limited by a few factors, among them, water deficit. Agricultural hydrogels can be used as an alternative to enhance the retention and availability of water and nutrients in the soil. Therefore, this study aimed to evaluate the influence of irrigation frequency and hydrogel doses on the development of white pitaya (Hylocereus undatus) seedlings to establish a time interval in days between irrigations that provides better seedling development and determine the hydrogel dose that provides a reduction of water consumption without damaging seedling development. The experimental design consisted of randomized blocks in a 4 x 4 factorial arrangement, in which the treatments corresponded to 4 hydrogel doses (0, 2, 4, and 6 g/plant of Biogel Hidro Plus) incorporated into the substrate and four irrigation frequencies (1, 3, 5, and 7 days of interval). The biometric characteristics, photosynthetic pigments, and organic and inorganic solutes of the plants were evaluated after 120 days. The use of daily irrigation negatively influenced the growth and biomass accumulation of the aerial part of the seedlings and, consequently, provided the lowest values of cladodes of the pitaya seedlings. Pitaya seedlings had greater development when using an irrigation frequency of around 3 days. The application of 6 g/plant of hydrogel provided the highest averages for accumulation of dry biomass, photosynthetic pigments, and organic and inorganic solutes at irrigation levels of 3.6, 4, and about 3.8 days of intervals, respectively. Hydrogel incorporation allowed increasing the interval between irrigations by 1 day without damages to the seedling development.

Publisher

Universidade Estadual de Londrina

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3