Physiological and biochemical responses of mini watermelon irrigated with brackish water under two types of irrigation system

Author:

Ó Laís Monique Gomes doORCID, ,Cova Alide Mitsue WatanabeORCID,Azevedo Neto André Dias deORCID,Silva Neilon Duarte daORCID,Silva Petterson Costa ConceiçãoORCID,Ribas Rogério FerreiraORCID,Santos Andressa LeiteORCID,Gheyi Hans RajORCID, , , , , , ,

Abstract

the use of marginal quality water can be a viable alternative in regions with water scarcity when associated with an adequate irrigation management strategy. The aim of this study was to evaluate the physiological and biochemical responses of ‘Sugar Baby’ mini watermelon as a function of irrigation management and salinity of the nutrient solution (ECsol). The experiment was carried out in a greenhouse of the Federal University of Recôncavo of Bahia, in the municipality of Cruz das Almas - BA, in a completely randomized design, with four replications. The plants were grown under two types of irrigation management (conventional drip - CD and pulse - PD) and four saline levels of the fertigation nutrient solution (2.5 - control; 4.5; 5.5; 6.5 dS m-1). At 65 days after cultivation, the following variables were evaluated: chlorophyll a and b content, chlorophyll a fluorescence, and organic and inorganic solutes content. The treatments did not influence the levels of chlorophyll a and b. Salinity decreased the quantum yield of photochemical energy conversion due to the increased quantum yield of unregulated energy loss. Irrigation management and water salinity did not affect carbohydrate content in mini watermelons leaves. However, soluble proteins were higher in the CD than in PD and decreased with increasing salinity in both managements. Salinity increased free amino acids in CD but did not change the content of these solutes in PD. Free proline was only influenced by the management system and was higher in CD than in PD. Sodium, chloride, and sodium to potassium ratio increased with ECsol, but these increases were more pronounced in PD. Salinity increased potassium content in PD and reduced in CD. The CD led to lower absorption of toxic ions, reducing the effects of salinity on the mini watermelon.

Publisher

Universidade Estadual de Londrina

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3