The fermentation efficiency exhibited by Saccharomyces cerevisiae on Sugarcane bagasse hydrolysate, by analyzing the effects of pre-treatment and detoxification

Author:

Gomes Marcia AndréaORCID,Santos-Rocha Martha Suzana Rodrigues dosORCID,Barbosa Kledson LopesORCID,Vieira Rosana CorreiaORCID,Antunes Dellysandra Pamela CôrreaORCID,Silva Carlos Eduardo de FariasORCID,Almeida Renata Maria Rosas GarciaORCID,Albuquerque Elaine Christine de Magalhães CabralORCID

Abstract

In this study, the possibility of increasing fermentation efficiency of Saccharomyces cerevisiae on sugarcane bagasse (a type of lignocellulosic waste) was analyzed. Sugarcane bagasse was subjected to hydrothermal and acidic pre-treatment. Next, the enzymatic hydrolysis of raw biomass and each pre-treated biomass was performed using CellicCtec® enzymatic complex to obtain sugarcane hydrolysate, hydrothermal hydrolysate and acidic hydrolysate. Next, these were fermented by S. cerevisiae to check if the by-products of enzymatic hydrolysis, furfural and acetic acid had an inhibitory effect on fermentation efficiency. Next, each pre-treated biomass was subjected to detoxification involving activated charcoal. Each detoxified biomass was tested for fermentation efficiency. The lignocellulosic composition for sugarcane hydrolysate, hydrothermal hydrolysate and acidic hydrolysate, varied significantly, and were found to be, for cellulose 36.7%, 27.7% and 63.7% respectively; for hemicellulose 22.2%, 4.4% and 12% respectively; and for lignin 21.2%, 27.7% and 28.7% respectively. The presence of furfural and acetic acid had a strong influence on the fermentation efficiency of S. cerevisiae, and affected the consumption of sugars in each biomass by more than 90%. Further, we found that the detoxification process increased fermentation efficiency by 12.7% for the hydrothermal hydrolysate while for the acidic hydrolysate no significant difference was observed. This study showed that fermentation with greater efficiency is viable through the combined use of hydrothermal pre-treatment and detoxification. This combination of methods also causes less pollution as compared with the method involving acid pre-treatment due to the reduced number of effluents produced.

Publisher

Universidade Estadual de Londrina

Subject

General Agricultural and Biological Sciences

Reference45 articles.

1. Association of Official Analytical Chemists (2005). Official methods of analysis of the association (18nd ed.). AOAC.

2. Barros, B. N., Scarminio, I. S., & Bruns, R. E. (2001). Como fazer experimentos: pesquisa e desenvolvimento na ciência e na indústria. Editora da Unicamp.

3. Behera, S., Richa, A., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36(2014), 91-106. doi: 10.1016/j.rser.2014.04.047

4. Bezerra, P. X. O., Silva, C. E. de F., Soletti, J. I., & Carvalho, S. H. V. (2020). Cellulosic ethanol from sugarcane straw: a discussion based on industrial experience in the northeast of Brazil. Bioenergy Research, 14.(3), 761-773. doi: 10.1007/s12155-020-10169-w

5. Box, G. E. P., & Wetz, J. (1973). Criteria for judging adequacy of estimation by an approximate response function. University of Wisconsin Technical Report, 9(1973), 95.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3