Genetic divergence based on leaf vegetative and anatomical traits of Coffea canephora clones

Author:

Araújo Larissa Fatarelli Bento deORCID, ,Espindula Marcelo CuritibaORCID,Rocha Rodrigo BarrosORCID,Torres Josemar DávilaORCID,Campanharo MarcelaORCID,Pego Wesley Franco OliveiraORCID,Rosa Samuel Elias de SouzaORCID, , , , , ,

Abstract

Knowledge of the expression of traits associated with drought tolerance is important to mitigate impacts on coffee production in a climate change scenario. This study aimed to understand the genetic divergence between Coffea canephora genotypes grown in the Western Amazon based on leaf vegetative and anatomical traits. For this, fifteen high-performance genotypes were evaluated in a randomized block design with five replications of one plant per plot to analyze three leaf vegetative traits (leaf area index, root volume, and total dry mass) and five leaf anatomical traits (polar and equatorial diameter, density and number of stomata, and stomatal area). The data were interpreted using analysis of variance and the Scott-Knott mean cluster test (p ≤ 0.05). The Tocher optimization method and principal component analysis with reference points were used to quantify the genetic divergence. Tocher clustering separated the fifteen clones into five groups, and the scatter in the plane into three groups. Stomatal density was the trait that most contributed to the dissimilarity between genotypes with the potential to be used in future studies for the selection of water deficit-tolerant genotypes. The BRS 3213 genotype showed the greatest genetic dissimilarity and composed a group isolated from the other genotypes in terms of anatomical characteristics. Hybrids 12 and 15 have leaf anatomical traits with higher drought tolerance potential.

Publisher

Universidade Estadual de Londrina

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3