Growth, photosynthetic pigments, and photochemical efficiency of sour passion fruit as a function of the cationic nature of water

Author:

Paiva Francisco Jean da SilvaORCID, ,Lima Geovani Soares deORCID,Lima Vera Lúcia Antunes deORCID,Ramos Jailton GarciaORCID,Gheyi Hans RajORCID,Farias Maria Sallydelândia deORCID,Fernandes Pedro DantasORCID,Azevedo Carlos Alberto Vieira deORCID, , , , , , ,

Abstract

The objective of this study was to evaluate the growth, photosynthetic pigments, and photochemical efficiency of sour passion fruit cv. BRS Rubi do Cerrado irrigated with waters of different cationic natures. The experiment was carried out from March 2019 to January 2020 in a protected environment belonging to the Academic Unit of Agricultural Engineering of the Federal University of Campina Grande (UFCG), Campina Grande, PB, Brazil. The treatments consisted of eight combinations of irrigation water with different cationic natures: S1 - Control; S2 - Na+; S3 - Ca2+; S4 - Mg2+; S5 - Na+ + Ca2+; S6 - Na+ + Mg2+; S7 - Ca2+ + Mg2+, and S8 - Na+ + Ca2+ + Mg2+. Plants in the control treatment (S1) were irrigated using water with an electrical conductivity (ECw) of 0.4 dS m-1, while the other treatments (S2; S3; S4; S5; S6; S7; and S8) were subjected to an ECw of 3.5 dS m-1. Sour passion fruit growth was affected by variations in the level of electrical conductivity, regardless of the cationic nature of irrigation water. The use of salinized water with sodium favored the synthesis of chlorophyll a, chlorophyll b, and carotenoids of passion fruit plants at 180 days after transplanting. The distinct cationic natures of irrigation water did not influence the fluorescence variables of sour passion fruit.

Publisher

Universidade Estadual de Londrina

Subject

General Agricultural and Biological Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3