Effect of particle size on storage time of hydrated corn grain

Author:

Zacaron Wilson NeiORCID, ,Basi ClovisneiORCID,Baggio CintiamaraORCID,Solivo GabrielaORCID,Moroni Liziane SchittlerORCID,Schogor Ana Luiza BachmannORCID,Zotti Claiton AndréORCID, , , , , ,

Abstract

Dry ground corn kernels are widely used as sources of energy readily available for microbial synthesis in the rumen. The objective of the present study was to measure the effect of particle size on the storage length of rehydrated and ensiled corn grain. Commercial corn was milled in 2-, 4-, 6-, 8-, and 10-mm sieves, rehydrated until reaching 65% DM, and ensiled for 14, 28, and 56 days, in a completely randomized design with a 5 x 3 factorial arrangement, with six replications per treatment. PVC mini-silos were used, with dimensions of 25 cm height x 10 cm of diameter. The variables DM, MM, CP, NDF, ADF, pH, molds and yeasts count, fermentative losses, in vitro degradability and aerobic stability were subjected to analysis of variance. The Tukey test was used to compare means. LAB counts was subjected to Wilcoxon's non-parametric test, considering significance at p < 0.05. Rehydrated corn silages with smaller particles (2 and 4 mm) showed higher LAB and mold counts, higher levels of CP and EE and higher density at opening silos than that of coarser particles. However, they showed lower percentages of DM, and were susceptible to microbial attack and faster temperature increases than were coarse particles during the chosen storage times. Silage subjected to 56 days of fermentation showed lower contents of NDF, ADF and CP, lower gas losses and lower pH values in aerobiosis, and increased levels of soluble protein (A + B1 fractions), losses by effluents, number of hours to reach maximum temperature, and time to break aerobic stability. Coarse-grind silages subjected to 56 days of storage showed better chemical composition, lower LAB and mold counts, and less susceptibility to microbial degradation when exposed to air.

Publisher

Universidade Estadual de Londrina

Subject

General Agricultural and Biological Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3