Procyanidins in Lotus L. genotypes grown in soil with different saturations of aluminum

Author:

Chini Sílvia Ortiz,Escosteguy Pedro Alexandre Varella,Scheffer-Basso Simone Meredith,Sobottka Andréa Michel,Bertol Charise Dallazem,Dall'Agnol Miguel

Abstract

Condensed tannins are formed by monomers of procyanidins and prodelfinidins, where the proportion and concentration of their monomers varies according to the plant species and environmental conditions. In Lotus spp., condensed tannins prevent tympanism in ruminants that feed on them. This study aimed to evaluate the concentration of procyanidins and their monomers, catechin and epicatechin in the genotypes of Lotus L. grown in soil with different saturations of aluminum. A two-factor (genotype × Al saturation) assay was performed, where the genotypes São Gabriel, Ganador, and UFRGS (Lotus corniculatus L.); Serrano (Lotus uliginosus); and El Rincón (Lotus subbiflorus) were cultivated in soil with an Al saturation of 0-20%. The procyanidins were evaluated using high-performance liquid chromatography, which was previously validated for catechin and epicatechin. The concentration of procyanidins and the proportion of epicatechin:catechin were affected by the genotype × environment interaction. In L. corniculatus and L. subbiflorus, the concentration of procyanidin was significantly higher when they were grown in the soil with an Al saturation of 20% compared to that when they were grown in the soil with 0% Al saturation, but the opposite effect was observed in L. uliginosus. The proportion of epicatechin:catechin decreased in plants grown in soil without Al, and only the UFRGS genotype maintained a similar proportion under both the soil acidity conditions. The predominant monomer was epicatechin, which varied from 57% to 75% according to the soil in which the plants were grown.

Publisher

Universidade Estadual de Londrina

Subject

General Agricultural and Biological Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3