Abstract
Self-compacting concrete has constructive advantages over conventional concrete, such as reducing labor and construction time, mainly because of its fluidity in the fresh state. However, in the hardened state, it maintains low performance when tensioned, and the fibers can be added to the mixture, maintaining a portion of the resistance after cracking. Steel fibers are usually added to concrete, but recently synthetic fibers have been used, due to their lower cost and non-corrosive nature, but with lower tensile strength. Thus, by combining the two types of fibers, the benefits of each material can be used. This work presents the results of an experimental program to evaluate the effect of the hybridization of metallic and synthetic fibers on the shear strength of self-compacting concrete beams without stirrups. The results demonstrate that both steel and hybrid fibers result in greater shear strength compared with the reference concrete without fibers before shear crack formation; however, the greatest advantages are attributed to post-cracking residual strength. The experimental results were compared with estimates calculated using equations published in the literature, demonstrating the feasibility of using some existing equations for concretes with the addition of hybrid fibers.
Publisher
Universidade Estadual de Londrina
Reference34 articles.
1. American Concrete Institute. (2014). Committee 318: Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14). American Concrete Institute.
2. American Society for Testing and Materials. (2014). ASTM Standard C469/C469M-14 Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International.
3. Ashour, S. A., Hasanain, G. S., &Wafa, F. F. (1992). Shear Behavior of High-Strength Fiber Reinforced Concrete Beams. ACI Structural Journal, 89, 176–184.
4. Blunt, J., Jen, G., & Ostertag, C. P. (2015). Enhancing corrosion resistance of reinforced concrete structures with hybrid fiber reinforced concrete. Corrosion Science, 92, 182–191.
5. Brown, M. C., Ozyildirim, H. C., & Duke, W. L. (2010). Investigation of Steel and Polymer Fiber Reinforced Self-Consolidating Concrete. In C. M. Aldea & L. Ferrara (Eds.), Sp 274: Fiber reinforced self-consolidating concrete: Research and applications (Chap. 6). American Concrete Institute.