Periodic Schwarz–Christoffel mappings with multiple boundaries per period

Author:

Baddoo Peter J.1ORCID,Crowdy Darren G.2ORCID

Affiliation:

1. DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

2. Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK

Abstract

We present an extension to the theory of Schwarz–Christoffel (S–C) mappings by permitting the target domain to be a single period window of a periodic configuration having multiple polygonal (straight-line) boundaries per period. Taking the arrangements to be periodic in the x -direction in an ( x ,  y )-plane, three cases are considered; these differ in whether the period window extends off to infinity as y  →  ± ∞, or extends off to infinity in only one direction ( y  →  + ∞ or y  →  − ∞), or is bounded. The preimage domain is taken to be a multiply connected circular domain. The new S–C mapping formulae are shown to be expressible in terms of the Schottky–Klein prime function associated with the circular preimage domains. As usual for an S–C map, the formulae are explicit but depend on a finite set of accessory parameters. The solution of this parameter problem is discussed in detail, and illustrative examples are presented to highlight the essentially constructive nature of the results.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A barycentric trigonometric Hermite interpolant via an iterative approach;Journal of Computational and Applied Mathematics;2024-03

2. Generalized Schwarz Integral Formulas for Multiply Connected Domains;SIAM Journal on Applied Mathematics;2023-05-10

3. Numerical computation of a preimage domain for an infinite strip with rectilinear slits;Advances in Computational Mathematics;2023-01-16

4. On the Bergman Projection and Kernel in Periodic Planar Domains;Operator Theory: Advances and Applications;2023

5. Stress Distribution Law of Full-Length Anchorage Bolt in Rectangular Roadway;Frontiers in Earth Science;2022-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3