Static bistability of spherical caps

Author:

Taffetani Matteo1ORCID,Jiang Xin2,Holmes Douglas P.2,Vella Dominic1ORCID

Affiliation:

1. Mathematical Institute, University of Oxford, Woodstock Road, Oxford OX2 6GG, UK

2. Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA

Abstract

Depending on its geometry, a spherical shell may exist in one of two stable states without the application of any external force: there are two ‘self-equilibrated’ states, one natural and the other inside out (or ‘everted’). Though this is familiar from everyday life—an umbrella is remarkably stable, yet a contact lens can be easily turned inside out—the precise shell geometries for which bistability is possible are not known. Here, we use experiments and finite-element simulations to determine the threshold between bistability and monostability for shells of different solid angle. We compare these results with the prediction from shallow shell theory, showing that, when appropriately modified, this offers a very good account of bistability even for relatively deep shells. We then investigate the robustness of this bistability against pointwise indentation. We find that indentation provides a continuous route for transition between the two states for shells whose geometry makes them close to the threshold. However, for thinner shells, indentation leads to asymmetrical buckling before snap-through, while also making these shells more ‘robust’ to snap-through. Our work sheds new light on the robustness of the ‘mirror buckling’ symmetry of spherical shell caps.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

H2020 European Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3