On the inverse spectral problem for Euclidean triangles

Author:

Antunes Pedro R. S.1,Freitas Pedro12

Affiliation:

1. Group of Mathematical Physics of the University of Lisbon, Complexo Interdisciplinar, Avenida do Professor Gama Pinto 2, 1649-003 Lisboa, Portugal

2. Department of Mathematics, Faculdade de Motricidade Humana (TU Lisbon), Cruz Quebrada, P-1495-688 Cruz Quebrada-Dafundo, Portugal

Abstract

We consider the inverse spectral problem for the Laplace operator on triangles with Dirichlet boundary conditions, providing numerical evidence to the effect that the eigenvalue triplet ( λ 1 , λ 2 , λ 3 ) is sufficient to determine a triangle uniquely. On the other hand, we show that other combinations such as ( λ 1 , λ 2 , λ 4 ) will not be enough, and that there will exist at least two triangles with the same values on these triplets.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference26 articles.

1. The method of fundamental solutions applied to the calculation of eigenfrequencies and eigenmodes of 2D simply connected shapes;Alves C. J. S.;Comput. Mater. Continua,2005

2. New Bounds for the Principal Dirichlet Eigenvalue of Planar Regions

3. A numerical study of the spectral gap

4. A meshfree numerical method for acoustic wave propagation problems in planar domains with corners and cracks

5. Proof of the Payne-Pólya-Weinberger conjecture

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hearing the Triangles: A Numerical Perspective;CSIAM Transactions on Applied Mathematics;2023-11

2. Any three eigenvalues do not determine a triangle;Journal of Differential Equations;2021-02

3. The Robin Laplacian—Spectral conjectures, rectangular theorems;Journal of Mathematical Physics;2019-12-01

4. Spectral theory of partial differential equations;Spectral Theory and Applications;2018

5. The Sound of Symmetry;The American Mathematical Monthly;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3