Bounds on the complex permittivity of polycrystalline materials by analytic continuation

Author:

Gully A.12,Lin J.3,Cherkaev E.1,Golden K. M.1

Affiliation:

1. Department of Mathematics, University of Utah, 155 S 1400 E JWB 233, Salt Lake City, UT 84112-0090, USA

2. Department of Mathematics and Statistics, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4L8, Canada

3. Department of Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407-0403, USA

Abstract

An analytic continuation method for obtaining rigorous bounds on the effective complex permittivity ε * of polycrystalline composite materials is developed. It is assumed that the composite consists of many identical anisotropic crystals, each with a unique orientation. The key step in obtaining the bounds involves deriving an integral representation for ε *, which separates parameter information from geometrical information. Forward bounds are then found using knowledge of the single crystal permittivity tensor and mean crystal orientation. Inverse bounds are also developed, which recover information about the mean crystal orientation from ε *. We apply the polycrystalline bounds to sea ice, a critical component of the climate system. Different ice types, which result from different growth conditions, have different crystal orientation and size statistics. These characteristics significantly influence the fluid transport properties of sea ice, which control many geophysical and biogeochemical processes important to the climate and polar ecosystems. Using a two-scale homogenization scheme, where the single crystal tensor is numerically computed, forward bounds for sea ice are obtained and are in excellent agreement with columnar sea ice data. Furthermore, the inverse bounds are also applied to sea ice, helping to lay the groundwork for determining ice type using remote sensing techniques.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3