Tin-containing silicates: structure–activity relations

Author:

Osmundsen Christian M.12,Holm Martin Spangsberg1,Dahl Søren2,Taarning Esben1

Affiliation:

1. Research and Development Division, Haldor Topsøe A/S, Nymøllevej 55, 2800 Kgs., Lyngby, Denmark

2. Department of Physics, Technical University of Denmark, Lyngby, Denmark

Abstract

The selective conversion of biomass-derived substrates is one of the major challenges facing the chemical industry. Recently, stannosilicates have been employed as highly active and selective Lewis acid catalysts for a number of industrially relevant reactions. In the present work, four different stannosilicates have been investigated: Sn-BEA, Sn-MFI, Sn-MCM-41 and Sn-SBA-15. When comparing the properties of tin sites in the structures, substantial differences are observed. Sn-beta displays the highest Lewis acid strength, as measured by probe molecule studies using infrared spectroscopy, which gives it a significantly higher activity at low temperatures than the other structures investigated. Furthermore, the increased acid strength translates into large differences in selectivity between the catalysts, thus demonstrating the influence of the structure on the active site, and pointing the way forward for tailoring the active site to the desired reaction.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 171 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3