Mass spectrometry-guided refinement of chemical energy buffers

Author:

Chen T.-R.1,Urban P. L.12ORCID

Affiliation:

1. Department of Applied Chemistry, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan

2. Institute of Molecular Science, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan

Abstract

Biocatalytic reactions often require supplying chemical energy and phosphate groups in the form of adenosine triphosphate (ATP). Auxiliary enzymes can be used to convert a reaction by-product—adenosine diphosphate (ADP)—back to ATP. By employing real-time mass spectrometry (RTMS), one can gain an insight into inter-conversions of reactants in multi-enzyme reaction systems and optimize the reaction conditions. In this study, temporal traces of ions corresponding to adenosine monophosphate (AMP), ADP and ATP provided vital information that could be used to adjust activities of the ‘buffering enzymes’. Using the RTMS results as a feedback, we also characterized a bienzymatic energy buffer that enables the recovery of ATP in the cases where it is directly hydrolysed to AMP in the main enzymatic reaction. The significance of careful selection of enzyme activities—guided by RTMS—is exemplified in the synthesis of glucose-6-phosphate by hexokinase in the presence of a buffering enzyme, pyruvate kinase. Relative activities of the two enzymes, present in the reaction mixture, influence biosynthetic reaction yields. This observation supports the conclusion that optimization of chemical energy recycling procedures is critical for the biosynthetic reaction economy.

Funder

Ministry of Science and Technology of Taiwan

National Chiao Tung University

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference33 articles.

1. Surgery of genes. At the doorstep of synthetic biology;Hobom B;Medizin. Klinik,1980

2. ‘Synthetic Biology’ makes its debut;Rawls RL;Chem. Eng. News,2000

3. Synthetic biology;Benner SA;Nature,2005

4. Compartmentalised chemistry: from studies on the origin of life to engineered biochemical systems

5. Synthetic biology: new engineering rules for an emerging discipline

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3