Multi-vortex crystal lattices in Bose–Einstein condensates with a rotating trap

Author:

Xie Shuangquan1,Kevrekidis Panayotis G.2,Kolokolnikov Theodore1ORCID

Affiliation:

1. Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada

2. Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA4 01003-4515, USA

Abstract

We consider vortex dynamics in the context of Bose–Einstein condensates (BECs) with a rotating trap, with or without anisotropy. Starting with the Gross–Pitaevskii (GP) partial differential equation (PDE), we derive a novel reduced system of ordinary differential equations (ODEs) that describes stable configurations of multiple co-rotating vortices (vortex crystals). This description is found to be quite accurate quantitatively especially in the case of multiple vortices. In the limit of many vortices, BECs are known to form vortex crystal structures, whereby vortices tend to arrange themselves in a hexagonal-like spatial configuration. Using our asymptotic reduction, we derive the effective vortex crystal density and its radius. We also obtain an asymptotic estimate for the maximum number of vortices as a function of rotation rate. We extend considerations to the anisotropic trap case, confirming that a pair of vortices lying on the long (short) axis is linearly stable (unstable), corroborating the ODE reduction results with full PDE simulations. We then further investigate the many-vortex limit in the case of strong anisotropic potential. In this limit, the vortices tend to align themselves along the long axis, and we compute the effective one-dimensional vortex density, as well as the maximum admissible number of vortices. Detailed numerical simulations of the GP equation are used to confirm our analytical predictions.

Funder

Nova Scotia

NSERC

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference51 articles.

1. Bose-Einstein condensates with vortices in rotating traps;Castin Y;Eur. Phys. J. D-Atomic Mol. Opt. Plasma Phys.,1999

2. Rotating trapped Bose-Einstein condensates

3. The Defocusing Nonlinear Schrödinger Equation

4. A Rigorous Derivation¶of the Gross–Pitaevskii Energy Functional¶for a Two-dimensional Bose Gas

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3