Abstract
We describe here the development of time-correlated single-photon counting techniques from the early use of spark discharge lamps as light sources through to the use of femtosecond mode-locked lasers through the personal work of the author. We used laser-excited fluorescence in studies on energy migration and rotational relaxation in synthetic polymer solutions, in biological probe molecules and in supersonic jet expansions. Time-correlated single-photon counting was the first method used in early fluorescence lifetime imaging microscopy (FLIM), and we outline the development of this powerful technique, with a comparison of techniques including wide-field microscopy. We employed these modern forms of FLIM to study single biological cells, and applied FLIM also to gain an understanding the distribution in tissue, and fates of photosensitizer molecules used in photodynamic therapy. We also describe the uses and instrumental design of laser systems for the study of ultrafast time-resolved vibrational spectroscopy.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献