The structure of Rényi entropic inequalities

Author:

Linden Noah1,Mosonyi Milán12,Winter Andreas134

Affiliation:

1. Department of Mathematics, University of Bristol, Bristol BS8 1TW, UK

2. Mathematical Institute, Budapest University of Technology and Economics, Egry J. u. 1, 1111 Budapest, Hungary

3. ICREA and Física Teòrica: Informació i Fenomens Quàntics, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain

4. Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Republic of Singapore

Abstract

We investigate the universal inequalities relating the α -Rényi entropies of the marginals of a multi-partite quantum state. This is in analogy to the same question for the Shannon and von Neumann entropies ( α =1), which are known to satisfy several non-trivial inequalities such as strong subadditivity. Somewhat surprisingly, we find for 0< α <1 that the only inequality is non-negativity: in other words, any collection of non-negative numbers assigned to the non-empty subsets of n parties can be arbitrarily well approximated by the α -entropies of the 2 n −1 marginals of a quantum state. For α >1, we show analogously that there are no non-trivial homogeneous (in particular, no linear) inequalities. On the other hand, it is known that there are further, nonlinear and indeed non-homogeneous, inequalities delimiting the α -entropies of a general quantum state. Finally, we also treat the case of Rényi entropies restricted to classical states (i.e. probability distributions), which, in addition to non-negativity, are also subject to monotonicity. For α ≠0,1, we show that this is the only other homogeneous relation.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference48 articles.

1. Thermodynamik quantenmechanischer Gesamtheiten;von Neumann J;Nachr. Ges. Wissenschaften Göttingen,1927

2. Concentrating partial entanglement by local operations

3. Proof of the strong subadditivity of quantum‐mechanical entropy

4. The inequalities of quantum information theory

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3