The dynamics of granular flow from a silo with two symmetric openings

Author:

Fullard L. A.1,Breard E. C. P.2,Davies C. E.3,Godfrey A. J. R.1,Fukuoka M.3,Wade A.3,Dufek J.2,Lube G.4

Affiliation:

1. Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand

2. Department of Earth Sciences, University of Oregon, Eugene, OR, USA

3. School of Engineering and Advanced Technology, Massey University, Palmerston North, New Zealand

4. Volcanic Risk Solutions, Massey University, Palmerston North, New Zealand

Abstract

The dynamics of granular flow in a rectangular silo with two symmetrically placed exit openings is investigated using particle image velocimetry (PIV), flow rate measurements and discrete element modelling (DEM). The flow of mustard seeds in a Perspex silo is recorded using a high-speed camera and the resulting image frames are analysed using PIV to obtain velocity, velocity divergence and shear rate plots. A change in flow structure is observed as the distance L between the two openings is varied. The mass flow rate is shown to be at a maximum at zero opening separation, decreasing as L is increased; it then reaches a minimum before rising to an equilibrium rate close to two times that of an isolated (non-interacting) opening. The flow rate experiment is repeated using amaranth and screened sand and similar behaviour is observed. Although this result is in contrast with some recent DEM and physical experiments in silo systems, this effect has been reported in an analogous system: the evacuation of pedestrians from a room through two doors. Our experimental results are replicated using DEM and we show that inter-particle friction controls the flow rate behaviour and explains the discrepancies in the literature results.

Funder

Royal Society of New Zealand

Royal Society of New Zealand Marsden Fund

New Zealand Natural Hazards Research Platform

National Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3