An observation-driven time-dependent basis for a reduced description of transient stochastic systems

Author:

Babaee H.1ORCID

Affiliation:

1. Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15261, USA

Abstract

We present a variational principle for the extraction of a time-dependent orthonormal basis from random realizations of transient systems. The optimality condition of the variational principle leads to a closed-form evolution equation for the orthonormal basis and its coefficients. The extracted modes are associated with the most transient subspace of the system, and they provide a reduced description of the transient dynamics that may be used for reduced-order modelling, filtering and prediction. The presented method is matrix free; it relies only on the observables of the system and ignores any information about the underlying system. In that sense, the presented reduction is purely observation driven and may be applied to systems whose models are not known. The presented method has linear computational complexity and memory storage requirement with respect to the number of observables and the number of random realizations. Therefore, it may be used for a large number of observations and samples. The effectiveness of the proposed method is tested on four examples: (i) stochastic advection equation, (ii) stochastic Burgers equation, (iii) a reduced description of transient instability of Kuramoto–Sivashinsky, and (iv) a transient vertical jet governed by the incompressible Navier–Stokes equation. In these examples, we contrast the performance of the time-dependent basis versus static basis such as proper orthogonal decomposition, dynamic mode decomposition and polynomial chaos expansion.

Funder

NASA Transformational Tools and Technologies

American Chemical Society, Petroleum Research Fund

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference31 articles.

1. Hey T Tansley S Tolle K. 2009 The fourth paradigm: data-intensive scientific discovery . Redmond WA: Microsoft Research.

2. van der Maaten LJP Postma EO van den Herik HJ. 2009 Dimensionality reduction: a comparative review. See https://lvdmaaten.github.io/publications/papers/TR_Dimensionality_Reduction_Review_2009.pdf.

3. From snapshots to modal expansions – bridging low residuals and pure frequencies

4. A Stochastic Collocation Approach to Bayesian Inference in Inverse Problems

5. The Wiener--Askey Polynomial Chaos for Stochastic Differential Equations

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3