Affiliation:
1. Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093-0416, USA
Abstract
This article presents a method for the homogenization of three-dimensional periodic elastic composites. It allows for the evaluation of the averaged overall frequency-dependent dynamic material constitutive tensors relating the averaged dynamic field variable tensors of velocity, strain, stress and linear momentum. Although the form of the dynamic constitutive relation for three-dimensional elastodynamic wave propagation has been known, this is the first time that explicit calculations of the effective parameters (for three dimensions) are presented. We show that for three-dimensional periodic composites, the overall compliance (stiffness) tensor, as produced directly by our formulation, is Hermitian, regardless of whether the corresponding unit cell is geometrically or materially symmetric. Overall, mass density is shown to be a tensor and, like the overall compliance tensor, always Hermitian. The average strain and linear momentum tensors are, however, coupled, and the coupling tensors are shown to be each others' Hermitian transpose. Finally, we present a numerical example of a three-dimensional periodic composite composed of elastic cubes periodically distributed in an elastic matrix. The presented results corroborate the predictions of the theoretical treatment illustrating the frequency dependence of the constitutive parameters. We also show that the effective properties calculated in this paper satisfy the dispersion relation of the composite.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献