Affiliation:
1. School of Mathematics, University of Birmingham, Birmingham B15 2TT, UK
2. School of Engineering and Centre for Scientific Computing, University of Warwick, Coventry CV4 7AL, UK
Abstract
Fibre-laden fluids are found in a variety of situations, while Couette devices are used for flow spectroscopy of long biological molecules, such as DNA and proteins in suspension. The presence of these fibres can significantly alter the rheology of the fluid, and hence must be incorporated in any modelling undertaken. A transversely isotropic fluid treats these suspensions as a continuum with an evolving preferred direction, through a modified stress tensor incorporating four viscosity-like parameters. We consider the axisymmetric linear stability of a transversely isotropic viscous fluid, contained between two rotating co-axial cylinders, and determine the critical wave and Taylor numbers for varying gap width and inner cylinder velocity (assuming the outer cylinder is fixed). Through the inclusion of transversely isotropic effects, the onset of instability is delayed, increasing the range of stable operating regimes. This effect is felt most strongly through incorporation of the anisotropic shear viscosity, although the anisotropic extensional viscosity also contributes. The changes to the rheology induced by the presence of the fibres therefore significantly alter the dynamics of the system, and hence should not be neglected.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献