Abstract
We develop a theory of thermal transport in nanoscale-layered structures based on wave processes. The theory incorporates two fundamental principles, first, that the spectra of thermally excited waves are determined by the temperature differential and the heat flux, and second, that the wave fields in the heat exchanging domains are coupled. The developed method includes classical theories as special cases that are valid in larger scales, and it naturally explains such phenomena as interface thermal resistance (Kapitsa resistance) and thermal rectification (asymmetry of thermal transport). Numerical examples demonstrate the feasibility of the approach, and they show good agreement with measurements of Kapitsa resistance reported in the literature.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献