Nonlinear dynamics of a dispersive anisotropic Kuramoto–Sivashinsky equation in two space dimensions

Author:

Tomlin R. J.1ORCID,Kalogirou A.2,Papageorgiou D. T.1

Affiliation:

1. Department of Mathematics, Imperial College London, SW7 2AZ, London, UK

2. School of Mathematics, University of East Anglia, NR4 7TJ, Norwich, UK

Abstract

A Kuramoto–Sivashinsky equation in two space dimensions arising in thin film flows is considered on doubly periodic domains. In the absence of dispersive effects, this anisotropic equation admits chaotic solutions for sufficiently large length scales with fully two-dimensional profiles; the one-dimensional dynamics observed for thin domains are structurally unstable as the transverse length increases. We find that, independent of the domain size, the characteristic length scale of the profiles in the streamwise direction is about 10 space units, with that in the transverse direction being approximately three times larger. Numerical computations in the chaotic regime provide an estimate for the radius of the absorbing ball in L 2 in terms of the length scales, from which we conclude that the system possesses a finite energy density. We show the property of equipartition of energy among the low Fourier modes, and report the disappearance of the inertial range when solution profiles are two-dimensional. Consideration of the high-frequency modes allows us to compute an estimate for the analytic extensibility of solutions in C 2 . We also examine the addition of a physically derived third-order dispersion to the problem; this has a destabilizing effect, in the sense of reducing analyticity and increasing amplitude of solutions. However, sufficiently large dispersion may regularize the spatio-temporal chaos to travelling waves. We focus on dispersion where chaotic dynamics persist, and study its effect on the interfacial structures, absorbing ball and properties of the power spectrum.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3