Theory of energy harvesting from heartbeat including the effects of pleural cavity and respiration

Author:

Zhang Yangyang1,Lu Bingwei2,Lü Chaofeng134ORCID,Feng Xue2

Affiliation:

1. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China

2. Department of Engineering Mechanics, Tsinghua University, Beijing 100084, People's Republic of China

3. Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Hangzhou 310027, People's Republic of China

4. Soft Matter Research Center, Zhejiang University, Hangzhou 310027, People's Republic of China

Abstract

Self-powered implantable devices with flexible energy harvesters are of significant interest due to their potential to solve the problem of limited battery life and surgical replacement. The flexible electronic devices made of piezoelectric materials have been employed to harvest energy from the motion of biological organs. Experimental measurements show that the output voltage of the device mounted on porcine left ventricle in chest closed environment decreases significantly compared to the case of chest open. A restricted-space deformation model is proposed to predict the impeding effect of pleural cavity, surrounding tissues, as well as respiration on the efficiency of energy harvesting from heartbeat using flexible piezoelectric devices. The analytical solution is verified by comparing theoretical predictions to experimental measurements. A simple scaling law is established to analyse the intrinsic correlations between the normalized output power and the combined system parameters, i.e. the normalized permitted space and normalized electrical load. The results may provide guidelines for optimization of in vivo energy harvesting from heartbeat or the motions of other biological organs using flexible piezoelectric energy harvesters.

Funder

National Natural Science Foundation of China

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3