Multiscale modelling of hydraulic conductivity in vuggy porous media

Author:

Daly K. R.1,Roose T.1

Affiliation:

1. School of Engineering Science, University of Southampton, Southampton SO17 1BJ, UK

Abstract

Flow in both saturated and non-saturated vuggy porous media, i.e. soil, is inherently multiscale. The complex microporous structure of the soil aggregates and the wider vugs provides a multitude of flow pathways and has received significant attention from the X-ray computed tomography (CT) community with a constant drive to image at higher resolution. Using multiscale homogenization, we derive averaged equations to study the effects of the microscale structure on the macroscopic flow. The averaged model captures the underlying geometry through a series of cell problems and is verified through direct comparison to numerical simulations of the full structure. These methods offer significant reductions in computation time and allow us to perform three-dimensional calculations with complex geometries on a desktop PC. The results show that the surface roughness of the aggregate has a significantly greater effect on the flow than the microstructure within the aggregate. Hence, this is the region in which the resolution of X-ray CT for image-based modelling has the greatest impact.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference38 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3