Parameter-robustness analysis for a biochemical oscillator model describing the social-behaviour transition phase of myxobacteria

Author:

Taghvafard Hadi1ORCID,Jardón-Kojakhmetov Hildeberto2,Cao Ming1

Affiliation:

1. Engineering and Technology Institute, University of Groningen, 9747 AG Groningen, The Netherlands

2. Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, 9747 AG Groningen, The Netherlands

Abstract

We develop a tool based on bifurcation analysis for parameter-robustness analysis for a class of oscillators and, in particular, examine a biochemical oscillator that describes the transition phase between social behaviours of myxobacteria. Myxobacteria are a particular group of soil bacteria that have two dogmatically different types of social behaviour: when food is abundant they live fairly isolated forming swarms, but when food is scarce, they aggregate into a multicellular organism. In the transition between the two types of behaviours, spatial wave patterns are produced, which is generally believed to be regulated by a certain biochemical clock that controls the direction of myxobacteria’s motion. We provide a detailed analysis of such a clock and show that, for the proposed model, there exists some interval in parameter space where the behaviour is robust, i.e. the system behaves similarly for all parameter values. In more mathematical terms, we show the existence and convergence of trajectories to a limit cycle, and provide estimates of the parameter under which such a behaviour occurs. In addition, we show that the reported convergence result is robust, in the sense that any small change in the parameters leads to the same qualitative behaviour of the solution.

Funder

European Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A geometric analysis of the SIR, SIRS and SIRWS epidemiological models;Nonlinear Analysis: Real World Applications;2021-04

2. Geometric analysis of oscillations in the Frzilator model;Journal of Mathematical Analysis and Applications;2021-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3