Acceleration and heating of metal particles in condensed matter detonation

Author:

Ripley Robert C.12,Zhang Fan13,Lien Fue-Sang1

Affiliation:

1. Department of Mechanical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

2. Martec Limited, 1888 Brunswick Street, Suite 400, Halifax, Nova Scotia, Canada B3J 3J8

3. Defence R&D Canada-Suffield, PO Box 4000, Station Main, Medicine Hat, Alberta, Canada T1A 8K6

Abstract

For condensed explosives, containing metal particle additives, interaction of the detonation shock and reaction zone with solid inclusions leads to high rates of momentum and heat transfer that consequently introduce non-ideal detonation phenomena. During the time scale of the leading detonation shock crossing a particle, the acceleration and heating of metal particles are shown to depend on the volume fraction of particles, dense packing configuration, material density ratio of explosive to solid particles and ratio of particle diameter to detonation reaction-zone length. Dimensional analysis and physical parameter evaluation are used to formalize the factors affecting particle acceleration and heating. Three-dimensional mesoscale calculations are conducted for matrices of spherical metal particles immersed in a liquid explosive for various particle diameter and solid loading conditions, to determine the velocity and temperature transmission factors resulting from shock compression. Results are incorporated as interphase exchange source terms for macroscopic continuum models that can be applied to practical detonation problems involving multi-phase explosives or shock propagation in dense particle-fluid systems.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3