Generation of magnetic and particle Pc5 pulsations during the recovery phase of strong magnetic storms

Author:

Pilipenko V.12,Kozyreva O.2,Belakhovsky V.3,Engebretson M. J.4,Samsonov S.5

Affiliation:

1. Space Research Institute, Moscow, Russia

2. Institute of the Physics of the Earth, Moscow, Russia

3. Polar Geophysical Institute, Apatity, Russia

4. Augsburg College, Minneapolis, MN, USA

5. Institute of Cosmophysics and Aeronomy, Yakutsk, Russia

Abstract

The dynamics of intense ultra-low-frequency (ULF) activity during three successive strong magnetic storms during 29–31 October 2003 are considered in detail. The spatial structure of Pc5 waves during the recovery phases of these storms is considered not only from the perspective of possible physical mechanisms, but as an important parameter of the ULF driver of relativistic electrons. The global structure of these disturbances is studied using data from a worldwide array of magnetometers and riometers augmented with data from particle detectors and magnetometers on board magnetospheric satellites (GOES, LANL). The local spatial structure is examined using the IMAGE magnetometers and Finnish riometer array. Though a general similarity between the quasi-periodic magnetic and riometer variations is observed, their local propagation patterns turn out to be different. To interpret the observations, we suggest a hypothesis of coupling between two oscillatory systems—a magnetospheric magnetohydrodynamic (MHD) waveguide/resonator and a system consisting of turbulence + electrons. We propose that the observed Pc5 oscillations are the result of MHD waveguide excitation along the dawn and dusk flanks of the magnetosphere. The magnetospheric waveguide turns out to be in a meta-stable state under high solar wind velocities, and quasi-periodic fluctuations of the solar wind plasma density stimulate the waveguide excitation.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3