Affiliation:
1. Department of Mathematics, University of Surrey, Guildford, Surrey GU2 7XH, UK
Abstract
The Kadomstev–Petviashvili (KP) equation is a well-known modulation equation normally derived by starting with the trivial state and an appropriate dispersion relation. In this paper, it is shown that the KP equation is also the relevant modulation equation for bifurcation from
periodic travelling waves
when the wave action flux has a critical point. Moreover, the emergent KP equation arises in a universal form, with the coefficients determined by the components of the conservation of wave action. The theory is derived for a general class of partial differential equations generated by a Lagrangian using phase modulation. The theory extends to any space dimension and time, but the emphasis in the paper is on the case of 3+1. Motivated by light bullets and quantum vortex dynamics, the theory is illustrated by showing how defocusing NLS in 3+1 bifurcates to KP in 3+1 at criticality. The generalization to
N
>3 is also discussed.
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献