Derivation of delay equation climate models using the Mori-Zwanzig formalism

Author:

Falkena Swinda K. J.12ORCID,Quinn Courtney34,Sieber Jan3ORCID,Frank Jason56,Dijkstra Henk A.16

Affiliation:

1. Institute for Marine and Atmospheric Research Utrecht, Department of Physics, Utrecht University, Utrecht, The Netherlands

2. Mathematics of Planet Earth Program, University of Reading, Reading, UK

3. Department of Mathematics, University of Exeter, Exeter, UK

4. CSIRO Oceans and Atmosphere, Hobart, Tasmania, Australia

5. Mathematical Institute, Utrecht University, Utrecht, The Netherlands

6. Centre for Complex Systems Studies, Faculty of Science, Utrecht University, Utrecht, The Netherlands

Abstract

Models incorporating delay have been frequently used to understand climate variability phenomena, but often the delay is introduced through an ad hoc physical reasoning, such as the propagation time of waves. In this paper, the Mori-Zwanzig formalism is introduced as a way to systematically derive delay models from systems of partial differential equations and hence provides a better justification for using these delay-type models. The Mori-Zwanzig technique gives a formal rewriting of the system using a projection onto a set of resolved variables, where the rewritten system contains a memory term. The computation of this memory term requires solving the orthogonal dynamics equation, which represents the unresolved dynamics. For nonlinear systems, it is often not possible to obtain an analytical solution to the orthogonal dynamics and an approximate solution needs to be found. Here, we demonstrate the Mori-Zwanzig technique for a two-strip model of the El Niño Southern Oscillation (ENSO) and explore methods to solve the orthogonal dynamics. The resulting nonlinear delay model contains an additional term compared to previously proposed ad hoc conceptual models. This new term leads to a larger ENSO period, which is closer to that seen in observations.

Funder

European Union Horizon 2020

EPSRC

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3