On molecular diffusion in nanostructured porous media: interfacial exchange kinetics and surface diffusion

Author:

Albaalbaki Bashar1,Hill Reghan J.1

Affiliation:

1. Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada H3A 2B2

Abstract

Water-vapour transport in nanostructured composite materials is poorly understood because diffusion and interfacial exchange kinetics are coupled. We formulate an interfacial balance that couples diffusion in dispersed and continuous phases to adsorption, absorption and interfacial surface diffusion. This work is motivated by water-vapour transport in cellulose fibre-based barriers, but the model applies to nanostructured porous media such as catalysts, chromatography columns, nanocomposites, cementitious structures and biomaterials. The interfacial balance can be applied in an analytical or a computational framework to porous media with any microstructural geometry. Here, we explore its capabilities in a model porous medium: randomly dispersed solid spheres in a continuous (humid) gas. We elucidate the roles of equilibrium moisture uptake, solid, gas and surface diffusion coefficients, inclusion size and interfacial exchange kinetics on the effective diffusivity. We then apply the local model to predict water-vapour transport rates under conditions in which the effective diffusivity varies through the cross section of a dense, homogeneous membrane that is subjected to a finite moisture-concentration gradient. As the microstructural length scale decreases from micrometres to nanometres, interfacial exchange kinetics and surface diffusion produce a maximum in the tracer flux. This optimal flux is flanked, respectively, by interfacial-kinetic- and diffusion-limited transport at smaller and larger microscales.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3