Revisiting the Fisher–Kolmogorov–Petrovsky–Piskunov equation to interpret the spreading–extinction dichotomy

Author:

El-Hachem Maud1,McCue Scott W.1,Jin Wang1,Du Yihong2,Simpson Matthew J.1ORCID

Affiliation:

1. School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia

2. School of Science and Technology, University of New England, Armidale, Australia

Abstract

The Fisher–Kolmogorov–Petrovsky–Piskunov model, also known as the Fisher–KPP model, supports travelling wave solutions that are successfully used to model numerous invasive phenomena with applications in biology, ecology and combustion theory. However, there are certain phenomena that the Fisher–KPP model cannot replicate, such as the extinction of invasive populations. The Fisher–Stefan model is an adaptation of the Fisher–KPP model to include a moving boundary whose evolution is governed by a Stefan condition. The Fisher–Stefan model also supports travelling wave solutions; however, a key additional feature of the Fisher–Stefan model is that it is able to simulate population extinction, giving rise to a spreading–extinction dichotomy . In this work, we revisit travelling wave solutions of the Fisher–KPP model and show that these results provide new insight into travelling wave solutions of the Fisher–Stefan model and the spreading–extinction dichotomy. Using a combination of phase plane analysis, perturbation analysis and linearization, we establish a concrete relationship between travelling wave solutions of the Fisher–Stefan model and often-neglected travelling wave solutions of the Fisher–KPP model. Furthermore, we give closed-form approximate expressions for the shape of the travelling wave solutions of the Fisher–Stefan model in the limit of slow travelling wave speeds, c ≪1.

Funder

Australian Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference63 articles.

1. Multidimensional nonlinear diffusion arising in population genetics

2. THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES

3. A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem;Kolmogorov AN;Bull. Moscow Univ. Math. Mech.,1937

4. On a Nonlinear Diffusion Equation Describing Population Growth

5. Mathematical Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3