Experimental study on penny-shaped fluid-driven cracks in an elastic matrix

Author:

Lai Ching-Yao1,Zheng Zhong1,Dressaire Emilie2,Wexler Jason S.1,Stone Howard A.1

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA

2. Department of Mechanical and Aerospace Engineering, New York University Polytechnic School of Engineering, Brooklyn, NY 11201, USA

Abstract

When a pressurized fluid is injected into an elastic matrix, the fluid generates a fracture that grows along a plane and forms a fluid-filled disc-like shape. We report a laboratory study of such a fluid-driven crack in a gelatin matrix, study the crack shape as a function of time and investigate the influence of different experimental parameters such as the injection flow rate, Young’s modulus of the matrix and fluid viscosity. We choose parameters so that effects of material toughness are small. We find that the crack radius R ( t ) increases with time t according to t α with α =0.48±0.04. The rescaled experimental data at long times for different parameters collapse based on scaling arguments, available in the literature, showing R ( t )∝ t 4/9 from a balance of viscous stresses from flow along the crack and elastic stresses in the surrounding matrix. Also, we measure the time evolution of the crack shape, which has not been studied before. The rescaled crack shapes collapse at longer times and show good agreement with the scaling arguments. The gelatin system provides a useful laboratory model for further studies of fluid-driven cracks, which has important applications such as hydraulic fracturing.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3