Bespoke extensional elasticity through helical lattice systems

Author:

Dixon Maximillian D. X.1,O'Donnell Matthew P.1,Pirrera Alberto1ORCID,Chenchiah Isaac V.2

Affiliation:

1. Bristol Composites Institute (ACCIS), Department of Aerospace Engineering, University of Bristol, Bristol BS8 1TR, UK

2. School of Mathematics, University of Bristol, Bristol BS8 1UG, UK

Abstract

Nonlinear structural behaviour offers a richness of response that cannot be replicated within a traditional linear design paradigm. However, designing robust and reliable nonlinearity remains a challenge, in part, due to the difficulty in describing the behaviour of nonlinear systems in an intuitive manner. Here, we present an approach that overcomes this difficulty by constructing an effectively one-dimensional system that can be tuned to produce bespoke nonlinear responses in a systematic and understandable manner. Specifically, given a continuous energy function E and a tolerance ϵ  > 0, we construct a system whose energy is approximately E up to an additive constant, with L -error no more that ϵ . The system is composed of helical lattices that act as one-dimensional nonlinear springs in parallel. We demonstrate that the energy of the system can approximate any polynomial and, thus, by Weierstrass approximation theorem, any continuous function. We implement an algorithm to tune the geometry, stiffness and pre-strain of each lattice to obtain the desired system behaviour systematically. Examples are provided to show the richness of the design space and highlight how the system can exhibit increasingly complex behaviours including tailored deformation-dependent stiffness, snap-through buckling and multi-stability.

Funder

Engineering and Physical Sciences Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3