Exact solution to a Liouville equation with Stuart vortex distribution on the surface of a torus

Author:

Sakajo Takashi1ORCID

Affiliation:

1. Department of Mathematics, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502, Japan

Abstract

A steady solution of the incompressible Euler equation on a toroidal surface T R , r of major radius R and minor radius r is provided. Its streamfunction is represented by an exact solution to the modified Liouville equation, T R , r 2 ψ = c e d ψ + ( 8 / d ) κ , where T R , r 2 and κ denote the Laplace–Beltrami operator and the Gauss curvature of the toroidal surface respectively, and c , d are real parameters with cd  < 0. This is a generalization of the flows with smooth vorticity distributions owing to Stuart (Stuart 1967 J. Fluid Mech. 29 , 417–440. ( doi:10.1017/S0022112067000941 )) in the plane and Crowdy (Crowdy 2004 J. Fluid Mech. 498 , 381–402. ( doi:10.1017/S0022112003007043 )) on the spherical surface. The flow consists of two point vortices at the innermost and the outermost points of the toroidal surface on the same line of a longitude, and a smooth vorticity distribution centred at their antipodal position. Since the surface of a torus has non-constant curvature and a handle structure that are different geometric features from the plane and the spherical surface, we focus on how these geometric properties of the torus affect the topological flow structures along with the change of the aspect ratio α  =  R / r . A comparison with the Stuart vortex on the flat torus is also made.

Funder

Japan Society for the Promotion of Science

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference24 articles.

1. The N-Vortex Problem

2. Vortex Dynamics

3. Surléquation aux différenes partielles d2logλ/du dv ± λ/2a 2 = 0;Liouville J;J. Math. Pures et Appl.,1853

4. On the generalized forms of exact solutions to the liouville equation via direct approach

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3