Affiliation:
1. Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo, Kyoto 615-8510, Japan
2. School of Electrical Engineering and Computer Science, Royal Institute of Technology (KTH), Teknikringen 14, 100 44 Stockholm, Sweden
Abstract
A power packet is a unit of electric power composed of a power pulse and an information tag. In Shannon’s information theory, messages are represented by symbol sequences in a digitized manner. Referring to this formulation, we define symbols in power packetization as a minimum unit of power transferred by a tagged pulse. Here, power is digitized and quantized. In this paper, we consider packetized power in networks for a finite duration, giving symbols and their energies to the networks. A network structure is defined using a graph whose nodes represent routers, sources and destinations. First, we introduce the concept of a symbol propagation matrix (SPM) in which symbols are transferred at links during unit times. Packetized power is described as a network flow in a spatio-temporal structure. Then, we study the problem of selecting an SPM in terms of transferability, that is, the possibility to represent given energies at sources and destinations during the finite duration. To select an SPM, we consider a network flow problem of packetized power. The problem is formulated as an M-convex submodular flow problem which is a solvable generalization of the minimum cost flow problem. Finally, through examples, we verify that this formulation provides reasonable packetized power.
Funder
New Energy and Industrial Technology Development Organization
Japan Science and Technology Agency
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献