Critical curvature localization in graphene. I. Quantum-flexoelectricity effect

Author:

Kothari Mrityunjay,Cha Moon-Hyun,Kim Kyung-SukORCID

Abstract

Here, we report the discovery of a new, curvature-localizing, subcritical buckling mode that produces shallow-kink corrugation in multi-layer graphene. Our density functional theory (DFT) analysis reveals the mode configuration—an approximately 2 nm wide boundary layer of highly localized curvature that connects two regions of uniformly but oppositely sheared stacks of flat atomic sheets. The kink angle between the two regions is limited to a few degrees, ensuring elastic deformation. By contrast, a purely mechanical model of sandwich structures shows progressive supercritical curvature localization spread over a 50–100 nm wide boundary layer. Our effective-locality model of electromechanics reveals that coupling between atomic-layer curvature and electric-charge polarization, i.e. quantum flexoelectricity, leads to emergence of a boundary layer in which curvature is focused primarily within a 0.86 nm fixed band width. Both DFT and the model analyses show focused distributions of curvature and polarization exhibiting oscillating decay within the approximately 2 nm wide boundary layer. The results show that dipole–dipole interaction lowers the potential energy with such a distribution. Furthermore, this model predicts peak-polarization density approximately 0.12 e -  nm −1 for 3° tilt angle. This high polarization concentration can be controlled by macroscopic deformation and is expected to be useful in studies of selective graphene-surface functionalization for various applications.

Funder

U.S. National Science Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference42 articles.

1. The structure of suspended graphene sheets

2. Intrinsic ripples in graphene

3. Zur Theorie der Phasenumwandlungen II;Landau LD;Phys. Z. Sowjetunion,1937

4. Crystalline Order in Two Dimensions

5. Quelques proprietes typiques des corpses solides;Peierls R. E;Ann. Inst. Henri Poincare,1935

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3