Quantifying plasma immersion ion implantation of insulating surfaces in a dielectric barrier discharge: how to control the dose

Author:

Tran Clara T.1ORCID,Ganesan Rajesh12,McKenzie David R.13

Affiliation:

1. School of Physics, University of Sydney, New South Wales 2006, Australia

2. Empa-Swiss Federal Labs for Material Science and Technology, Duebendorf 8600, Switzerland

3. Australian Institute of Nanoscale Science and Technology, New South Wales, Australia

Abstract

The plasma physics of dielectric barrier discharges (DBD) for carrying out ion implantation in insulators is investigated. A hollow cathode DBD excited by high-voltage pulses is suitable for ion bombardment of the surfaces of insulating tubing, porous material, particles and sheets. Plasma immersion ion implantation of insulating surfaces is useful for many applications in medicine and engineering. The ion bombardment of glass is useful for cleaning and surface modification. The ion implantation of polymers creates radicals that are able to bind molecules to their surfaces for applications in medical procedures and diagnostics. A wire diagnostic probe and optical emission spectroscopy are used for experimental work. A theory based on mutual capacitance is developed to convert data from the probe to give implanted charge as a function of pressure, voltage and pulse duration. We find the operating conditions that allow for charge to be implanted and those that achieve the highest implanted charge.

Funder

Australian Research Council

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3