In situ analysis of flow dynamics and deformation fields in cutting and sliding of metals

Author:

Guo Yang1,Compton W. Dale2,Chandrasekar Srinivasan2

Affiliation:

1. M4 Sciences LLC, West Lafayette, IN 47906, USA

2. Center for Materials Processing and Tribology, Purdue University, West Lafayette, IN 47907, USA

Abstract

The flow dynamics, deformation fields and chip-particle formation in cutting and sliding of metals are analysed, in situ , using high-speed imaging and particle image velocimetry. The model system is a brass workpiece loaded against a wedge indenter at low speeds. At large negative rake angles, the flow is steady with a prow of material forming ahead of the indenter. There is no material removal and a uniformly strained layer develops on the workpiece surface—the pure sliding regime. When the rake angle is less negative, the flow becomes unsteady, triggered by formation of a crack on the prow free surface and material removal ensuing—the cutting regime. The strain on the prow surface at crack initiation is found to be constant. Chip morphologies, such as discrete particle, segmented chip and continuous chip with mesoscale roughness, are shown to arise from a universal mechanism involving propagation of the prow crack, but to different distances towards the indenter tip. The simple shear deformation in continuous chip formation shows small-angle oscillations also linked to the prow crack. Implications for material removal processes and ductile failure are discussed.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3