Affiliation:
1. Department of Mathematics, Pennsylvania State University, University Park, PA 16802, USA
Abstract
In this paper, we present a homotopy training algorithm (HTA) to solve optimization problems arising from fully connected neural networks with complicated structures. The HTA dynamically builds the neural network starting from a simplified version and ending with the fully connected network via adding layers and nodes adaptively. Therefore, the corresponding optimization problem is easy to solve at the beginning and connects to the original model via a continuous path guided by the HTA, which provides a high probability of obtaining a global minimum. By gradually increasing the complexity of the model along the continuous path, the HTA provides a rather good solution to the original loss function. This is confirmed by various numerical results including VGG models on CIFAR-10. For example, on the VGG13 model with batch normalization, HTA reduces the error rate by 11.86% on the test dataset compared with the traditional method. Moreover, the HTA also allows us to find the optimal structure for a fully connected neural network by building the neutral network adaptively.
Funder
American Heart Association
National Science Foundation
AiCure company
Subject
General Physics and Astronomy,General Engineering,General Mathematics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献